If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+20=0
a = -16; b = 0; c = +20;
Δ = b2-4ac
Δ = 02-4·(-16)·20
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{5}}{2*-16}=\frac{0-16\sqrt{5}}{-32} =-\frac{16\sqrt{5}}{-32} =-\frac{\sqrt{5}}{-2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{5}}{2*-16}=\frac{0+16\sqrt{5}}{-32} =\frac{16\sqrt{5}}{-32} =\frac{\sqrt{5}}{-2} $
| 2^5x-17=8 | | 19c+9.25=500 | | 38.4+x=192 | | F(n)=1/3n+8 | | v-2.9=7.16 | | 3x-x2=110 | | -25-n/5=3n/5 | | 49-z=49 | | x^2+4x-9=2x-11 | | 4(2x-5)-1=4x+1 | | x/4-2.5=5 | | 20y-7=95 | | −30=5(x+1)x=x= | | 10a=14 | | 4y+2y=-36 | | -3m-7=-10 | | 8x+5=2(6x+15) | | 2(8x+5)=6x+15 | | 6.3=s-9.2 | | x/2-5=4x-7/2 | | 14x+21=4x-8 | | 2(8x+5)=2(6x+15) | | 11/4=5/x | | 7+6/x=5 | | X/8+x/7=16 | | 5/z=13/z+12 | | 8n^2-1=8n | | 2x*120=360 | | 12x=420 | | 20y+5=11 | | 6x6=0.6 | | x/10-3=0 |